基于相似日划分与常春藤优化的CNN-BiGRU-Attention光伏功率预测研究
    点此下载全文
引用本文:张雯涵,艾欣,王昊洋,徐衍会.基于相似日划分与常春藤优化的CNN-BiGRU-Attention光伏功率预测研究[J].电网与清洁能源,2025,41(10):119~127
摘要点击次数: 24
全文下载次数: 7
作者单位
张雯涵 新能源电力系统全国重点实验室(华北电力大学) 
艾欣 新能源电力系统全国重点实验室(华北电力大学) 
王昊洋 新能源电力系统全国重点实验室(华北电力大学) 
徐衍会 新能源电力系统全国重点实验室(华北电力大学) 
基金项目:国家重点研发计划项目(2021YFB4000104)
中文摘要:为提高光伏发电功率预测的准确度与效率,提出一种基于相似日划分和常春藤算法(ivy algorithm,IA)优化的卷积神经网络(convolutional neural network,CNN)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)-注意力机制的光伏功率预测模型。首先,构建基于动态时间规整的K中心点相似日选取方法,采用动态时间规整(dynamic time warping,DTW)距离替代传统聚类方法的欧氏距离,实现对历史数据的非线性时间序列聚类,并将其划分为晴天、阴天和雨/雪天3种类型;其次,提出基于IA优化的CNN-BiGRU-注意力机制组合预测模型,利用IA自动优化超参数,并结合CNN的空间特征提取、BiGRU的时序建模能力以及注意力机制的关键信息聚焦功能,提升模型预测性能;最后,采用新疆某光伏电站的实测数据进行算例分析。实验结果表明,所提模型在长、短期预测中均表现出更高的准确性和时效性,同时验证了改进聚类方法的有效性。
中文关键词:光伏发电功率  预测模型  神经网络  常春藤算法
 
Research on Photovoltaic Power Prediction Based on Similar-Day Clustering and Ivy Algorithm with CNN-BiGRU-Attention Hybrid Model
Abstract:To enhance photovoltaic power forecasting performance,a novel prediction model is developed by integrating similarity day classification with an Ivy algorithm-optimized convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU)-attention mechanism. First,a dynamic time warping (DTW)-based k-medoids method for selecting similar days is proposed. This approach replaces the Euclidean distance in traditional clustering with DTW distance to achieve nonlinear time series clustering of the historical data,which is classified into three categories:sunny,cloudy,and rainy/snowy. Second,a combined forecasting model based on an Ivy Algorithm-optimized Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention Mechanism is introduced.The Ivy Algorithm automatically tunes the hyperparameters,while the CNN extracts spatial features,the BiGRU captures temporal dependencies,and the attention mechanism focuses on key information,thereby collectively improving prediction performance. Finally,a case study is conducted using real operational data from a PV plant in Xinjiang. Results demonstrate the proposed model delivers significantly higher accuracy and faster prediction speed for both long-term and short-term forecasting,while also confirming the effectiveness of the enhanced clustering method.
keywords:photovoltaic power generation  prediction model  neural network  Ivy algorithm
查看全文  查看/发表评论  下载PDF阅读器
    《电网与清洁能源》杂志

期卷浏览

关键词检索

最新公告栏

您是第4102953位访问者    Email: psce_sn@163.com
版权所有:电网与清洁能源网 陕ICP备16002958号-1
本系统由北京勤云科技发展有限公司设计