油纸绝缘匝间放电超声信号的发展特性和放电阶段识别方法
    点此下载全文
引用本文:付文光1,2,薛利军3,郑璐1,2,戴景琪4,5,董明5,焦在滨5,王昊5.油纸绝缘匝间放电超声信号的发展特性和放电阶段识别方法[J].电网与清洁能源,2025,41(12):85~93
摘要点击次数: 9
全文下载次数: 3
作者单位
付文光1,2 1.内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司2.内蒙古自治区新型电力系统智能电网企业重点实验室 
薛利军3 3.内蒙古电力(集团)有限责任公司鄂尔多斯供电公司 
郑璐1,2 1.内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司2.内蒙古自治区新型电力系统智能电网企业重点实验室 
戴景琪4,5 4.内蒙古电力(集团)有限责任公司5.西安交通大学 
董明5 5.西安交通大学 
焦在滨5 5.西安交通大学 
王昊5 5.西安交通大学 
基金项目:国家重点研究发展计划项目(2023YFB2406905);内蒙古电力(集团)有限责任公司科技项目(2024-4-53)
中文摘要:为了研究变压器油纸系统匝间局部放电,该研究构建了基于超声信号的检测试验平台,并采用恒压法获取数据。通过设计数据预处理方法、提取超声信号的时域和频域特征,分析特征参量的发展特性。基于发展特性将匝间局部放电划分为3个阶段,起始阶段、发展阶段和预击穿阶段,通过层次聚类算法验证其合理性,并构建了基于斑翠鸟优化算法的最小二乘支持向量机-自适应增强模型的阶段识别方法。实验结果表明,匝间超声信号特征在发展阶段波动较小,起始阶段和预击穿阶段有明显突变;3个阶段的匝间放电数据样本的识别正确率均超过96%,总体识别正确率为98%。
中文关键词:匝间放电  超声信号  阶段识别  斑翠鸟优化
 
Development Characteristics of Ultrasonic Signals from Inter-Turn Discharge in Oil-Paper Insulation and Identification Methods for Discharge Stages
Abstract:In this study,a test platform for detecting inter-turn partial discharge (IPD) in transformer oil-paper insulation systems,based on ultrasonic signals,is established. Data acquisition is performed using the constant voltage method. Through designing a data preprocessing method for ultrasonic signals,the time-domain and frequency-domain characteristics of the signals are extracted,and the development characteristics of the characteristic parameters are analyzed. According to these evolutionary patterns,inter-turn partial discharge is categorized into three stages: the initial stage,the development stage,and the pre-breakdown stage. The hierarchical clustering algorithm is employed to validate the rationality of this staging. Additionally,a least squares support vector machine-adaptive boosting model,optimized by the pied kingfisher optimization algorithm,is constructed. Test results indicate that the characteristics of inter-turn ultrasonic signals exhibit minimal fluctuation during the development stage,whereas significant mutations occur in the initial stage and pre-breakdown stage. The recognition accuracy for inter-turn discharge data samples across the three stages exceeds 96%,with an overall recognition accuracy of 98%.
keywords:inter-turn discharge  ultrasonic signal  stage identification  pied kingfisher optimization (PKO) algorithm
查看全文  查看/发表评论  下载PDF阅读器
    《电网与清洁能源》杂志

期卷浏览

关键词检索

最新公告栏

您是第4120114位访问者    Email: psce_sn@163.com
版权所有:电网与清洁能源网 陕ICP备16002958号-1
本系统由北京勤云科技发展有限公司设计